Regular Polygons and Polyhedra of
the Fourth Kind

MAA NCS/MinnMATYC Fall 2025 meeting, October 11, 2025
Tom Ruen, Email: tomruen@gmail.com, Web: http://roice3.org/ruen/

Abstract: Regular polyhedra exhibit transitivity across vertices, edges, and faces, bounded by regular faces and vertex
figures. They occur in dual pairs, unless self-dual. Classical families include Platonic solids with regular convex faces (1st
kind), Kepler—Poinsot polyhedra with regular star faces (2nd kind), and Petrie—Coxeter with regular skew faces (3rd kind).
We propose a 4th kind, allowing faces and vertex figures to be symmetric graphs. Examples include polyhedra with faces

isomorphic to K4 (skeletal 3-simplex), Ks (skeletal 4-simplex), K3,2,2 (skeletal octahedron), and 2Cs (star of David). We
survey symmetric graphs up to 15 vertices as candidate faces for future regular polvhedra.
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Regular polygons and polyhedra of the 4t kind!

Regular polyhedra of nth kind have nth kind of regular faces and vertex figure.

1.

Allow regular convex faces and verfs
5 Platonic {3,p}, {p,3}, with p=3,4,5

Allow regular star faces and verfs
4 Kepler-Poinsots {5/2,p}, {p,5/2}, p=3,5

Allow regular skew faces or verfs
(a) Petrie infinite polyhedra (skew verfs): {4,6|4}, {6,4|4}, {6,6]|3}
(b) Petrial regulars (skew faces): {3,p}., {p,3},. {5/2,p}.. {p,5/2,p}, with p=3,4,5

Allow symmetric graph faces and verfs
* Yet unexplored polyhedra!

Allow symmetric hypergraphs faces and verfs
(a) Regular complex polygons in C? (~R*%) and complex polyhedra in C3 (~R®).
(b) Projective geometries PG(3,k) and point-line-plane configurations



First Kind: Platonic solids

Named by Kepler after Plato (~400 BC) who associated with: fire, earth, air, water, and aether.

Triangles, squares and pentagons fit in a cyclic path around a vertex in 5 ways.

Schlafli symbol {p, g} means wrap g p-gons around a vertex. A Q
The g-gon is a “vertex figure”, the cyclic path of neighboring vertices. I:I

{3, 3} is self-dual. {3, p} and {p, 3} are duals, p=4, 5. {3} {4y {5}

Tetrahedron Cube Octahedron Dodecahedron Icosahedron
(hexahedron)

3,3} {43} {34 {53} {35}


https://en.wikipedia.org/wiki/Platonic_solid

Regular polygons of the first and second kind

(First) Regular convex polygons, {p}, have p equal vertices and edges, p=3,4,5,...
(Second) Regular star polygons {p/qg} have p vertices, edges, step g, gcd{p,q}=1
The g is also called the density, times the edge path wraps around.

Only the pentagram, {5/2} exists in regular polyhedra...

AOOQOOOO

8 {4 8 8y {7 {8 {9 {10}

R O3 5 Ok &

W2y {ri2y {713y {8/3} {9/2} {9/4} {10/3}



https://en.wikipedia.org/wiki/Regular_polygon
https://en.wikipedia.org/wiki/Regular_polygon
https://en.wikipedia.org/wiki/Star_polygon
https://en.wikipedia.org/wiki/Star_polygon
https://en.wikipedia.org/wiki/Pentagram

Second Kind: Kepler-Poinsot

Johannes Kepler identified in 1609, Harmonice Mundi
Louis Poinsot rediscovered and formalized in 1809.
One face is colored yellow for clarity

Small stellated Great stellated Great Great
dodecahedron dodecahedron dodecahedron icosahedron



https://en.wikipedia.org/wiki/Kepler%E2%80%93Poinsot_polyhedron
https://en.wikipedia.org/wiki/Kepler%E2%80%93Poinsot_polyhedron
https://en.wikipedia.org/wiki/Kepler%E2%80%93Poinsot_polyhedron

Third Kind (a): Skew vertex figures

Donald Coxeter named these infinite regular polyhedra after
John Flinders Petrie who in 1926 found regular faces (squares
and hexagons) fit in 3D in regular skew vertex figures.

{p, 29| h} has 2q p-gons zig-zagging, {q}#{ }, h-gonal hole cycles.

3D infinite polyhedra skew polygon vertex figures

{4,6]4} {6,6]3}

{3} } {23}


https://en.wikipedia.org/wiki/Skew_apeirohedron#Regular_skew_apeirohedra

Detour: Polygon interiors

Convex polygons have clear interiors.
Star polygons are topological, not bounding space.

Representations

1. Fill by edge crossings: logical XOR, OR, density count
2. Convex hulls — polygonal interior, circular, disk interior

°0 9.9

density hull

cwcular


https://en.wikipedia.org/wiki/Star_polygon#Interiors

Third Kind (b): skew faces - Petrial Platonics

A petrial polyhedron uses skeleton of a regular polyhedron and connects faces
as regular skew polygons.

Dodecahedral petrial {5,3} , has central skew decagon faces: {5}#{ }.
Drawing “interior” of skew decagon by convex hull or a skew circle.

S~
Skew face: {S}#{ } hull skew circular


https://en.wikipedia.org/wiki/Petrie_dual
https://en.wikipedia.org/wiki/Petrie_dual

Third Kind (b): skew faces

The petrial dodecahedron has the 20 vertices, and 30 edges of
dodecahedron, but only 6 faces as skew decagons.

Hull render shows as interpenetrating pentagonal antiprisms
Skew circular better shows 6 colored paths, 2 faces paths per edge.

hull skew circular Edges only



Detour: Configuration matrix

A configuration matrix for polyhedron counts vertices, edges, and faces on the
diagonal and incidences off diagonal.

Lower left counts vertices and edges of faces. Upper right on vertex figure.



https://en.wikipedia.org/wiki/Configuration_(polytope)

Configurations of Kepler-Poinsot

{5/2,5} and {5,5/2} have identical configuration matrices
Since pentagon {5} and pentagram {5/2} same structure!
Same 12 vertices, same 12 face planes, different 30 edges.

{3,5/2} {5/2,3}

JJJ

Duals J

,A* Q#r




A polyhedron of 4™ kind!

Union of {5/2,5} and {5,5/2} gives us {K.,K:}?
Each “pentagonal” face is a complete graph, K;!
Edges (red/green) different length, but abstractly transitive, symmetry double to 240.
Full symmetry can be expressed in 6-dimension on 6-orthoplex, 4-simplex “faces”

AN

{5/2,5} U {5,5/2}

\% face vertex figure

{5}U{5/2}=K5 dual to K5




Other examples?

A compound of 5 cubes exist on 20 vertices of dodecahedron.

It can be interpreted as a polyhedron with square faces and a
double triangle vertex figure. {4,6/2}

Its dual, compound of 5 octahedra as {6/2,4}

Compound 5 cubes {4,6/2y Compound 5 octahedra
o {6/2,4}

IJJJ
K

4

60| 2
620



https://en.wikipedia.org/wiki/Compound_of_five_cubes
https://en.wikipedia.org/wiki/Compound_of_five_octahedra

Another example

A second level faceting of a dodecahedral skeleton produces a 20 vertex, 20
face self-dual polyhedron, with 12 edges per face and 120 total edges.

The face is isomorphic to skeleton of octahedron, graph K, , .

Facetlng of dodecahedron K2,2,2 face Dual K2.2.2




Regular polyhedra of the 4t kind

These new polyhedra can be seen as rank 3 incidence structures
composed of 1 transitivity class of vertex, edge, and face.

Each edge has 2 vertices, and incident to 2 faces.
Faces are graph: a vertices, b edges, degree 2b/a. (a,,,, b,)
Vertex figures are graphs: c edges, d faces, degree 2d/c. (c,,. d,)

HOW many more?! v-e handshaking  v-f handshaking e-f handshaking
No one knows!
NEXT V| C d vc=2e vd=af 2e=Dbf

What small symmetric 2 e 2 V C V d e 2
graphs exist?
bfl |2e |af| |bf




How many small symmetric graphs?

A133181 Number of distinct connected simple symmetric (edge- and vertex-transitive) graphs with n nodes
A087145 Number of distinct disconnected simple symmetric graphs on n nodes.

013621§THE ON*LINEENCYCLOPEDIA The OEIS is supp { By the mapy generous donors to the OEIS Fy

752 OF INTEGER SEQUENCES ® 013627 THE ON-LINE ENCYCLOPEDI.
QEE
23 1

10221121 0 ®
founded in 1964 by N. . A. Sloane >OF INTEGER SEQUENCES
10221121
‘ | (oarch] e founded in 1964 by N. J. A. Sloar
(Grestings from The On-Line Flateger Sequences!) 904 by IN. J. Ju. oloz
A133181 Number of distinct connected simple symmetric (edge- and vertex transitive) graphs with n nodes 3
1,1,1,2,2,4,2,5,4,8 2,11, 4, 8 10 ‘
(list: praph: refs; listen: history; text: internal format) (Greetings from The On-Line Encyclopedia of Integer Sequences!)
OFFSET 1,4
coMMENTS . . . ]
CSCiriZQ"ZﬂﬁdeﬁéﬁtrZK!TiiCé‘. terminology, which is variously used to mean both arc-transitive and both ADR7145 Nl s e G TR R FTE FER G TN .
The symmetry means that any two vertices and any two edges are equivalent. In other words, if we have an e,1,1,21,3,1,4,2,4,1,9,1, 4, 4,9, 1, 11, 1, 14, 4, 4, 1, 25, 3, 6, 6, 14, 1, 27,
initial labeling of the graph with vertices A and B adjacent (directly connected by an edge), we can _ N  listen- -
relabel any two adjacent vertices as A and B and then relabel the remaining vertices sa that new graph (lst; graph; cefs; Kisten; history, text, internal formaf)
will be equal to the initial. OFFSET 1,4
The first known difference from A226238 (connected arc-transitive graphs on n vertices) occurs at a(27),
corresponding to the Doyle graph (which is both edge- and vertex-transitive but not arc-transitive). - LINKS Table of n, a(n) for n=1..31 .
Eric W. Weisstein, May I1|3 2017 dored o (and ) Eric Welsstein's World of Mathematics, Symmetric Graph
By convention, empty graphs are considered edge-transitive (and hence symmetric). FORMULA _ ) .
- Table of n, a(n) for nel..1s. aln) = Sum{d|n, d=n} A133181(d). charl_}e Neder, Apr 24 2019
Eric Weisstein's World of Mathematics, Arc-Transitive Graph CROSSREFS cf. A133181 (number of connected symmetric graphs).
E;iz :Zi::t‘::: :g;{ﬂ g; xt:zx:g:: E—EVETSQ:E—E‘WE ronh cf. A286931 (number of not necessarily connected symmetric graphs).
Eric Weisstein's world of Mathematics. ﬂiimeh’u Graph o Sequence 1n context: A338899 A362071 A194942 * A117172 AB29207 A111902
Eric Weisstein's World of Mathematics, Vertex-Transitive Graph Adjacent sequences: AB387142 A@87143 AP37144 * ABS7146 AG87147 AS7148
EXAMPLE The complete graph is symmetrical. KEYWORD nenn,more
In addition, if the number of vertices is > 3, the simple cycle through all vertices is symmetrical. '
Graphs determined by vertices and edges of Platonic solids are symmetrical. AUTHOR Eric W. Weisstein, Aug 19 2003
The square K X K grid with right vertices connected to correspending left vertices and bottom vertices EXTENSIONS
connected to corresponding top vertices is symmetrical. Corrected and extended by David Wasserman, Feb 14 2006
The smallest nontrivial and non-Platonic symmetric graph is the hexagon with connected opposite vertices. a(12)-a(31) from charlie Neder, Apr 24 2019
An example of a symmetrical graph with 13 vertices: STATUS approved
6 connected to 1, 2, 3, 4 PP
1 connected to 6, 5, 6, 7
2 connected to @, 5, 8, 9
3 connected to 6, 6, 10, 1L
4 connected to 6, 8, 10, 12
5 connected to 1, 2, 10, 1L
6 connected to 1, 3, 8, 12
7 connected to 1, 8, 9, 11
8 connected to 2, 4, 6, T
9 connected to 2, 7, 10, 12
16 connected to 3, 4, 5, 9
11 connected to 3, 5, 7, 12
12 connected to 4, 6, 9, 11

Vertices 123 10 11 12 13 14|15 16 17 18 |19 20 21 22 23 24 25

8 9
Connected 1 1|1 5 |4 |8 2 1|4 |8 10 |15 |4 14 3 22 |13 |8 2 34 1"
4 2 4 1 9 1 4 4 9 1 11 1 14 4 4 1 25 |3

3 (7 |3 |9 |6 (12,3 (205 (12|14 |24 |5 25 |4 36 |17 |12 |3 59 |14

4

2
Unconnected | 0 1|12 1

All 11224

9

Cumulative 1|3 |5 12119 |22 1 31 |37 |49 |52 | 72 | 77|89 | 103 | 127 | 132 | 157 | 161 | 197 | 214 | 226 | 229 | 288 | 302



Dr. Marston Conder, 2021

Department of Mathematics, University of Auckland

A complete list of all connected symmetric
graphs of order 2 to 47! (previous up to 30)

Computed, indexed, but graphs are not named!

Below is a complete list of all connected symmetric (arc-transitiwve)
graphs of order 2 to 47, together with some information about their
automorphism groups. This list was constructed from the database of
all transitiwve groups of degree up to 47, available in Magma.

Ssymmetric connected graphs of order 2

Note that for any particular order (2 to 47), the graphs are not Smetric graph 1 of order 2
necessarily in the same order as in the list I created for orders Valency 1
2 to 30 in April 2014. In this one, they are ordered by wvalency, .

Diameter 1

and by order of the automorphism group (for each given wvalency). .
Automorphism group of order 2

The graphs in this list are specified by their edgs-sets. Number of arcs = 2
Another copy of this list is available with graphs specified by Number of Z2-arcs = 0 J—arc—-transitive true
the neighbours of each vertex.
Edge-set
Marston Conder { {1,2} }

December 2021



Symmetric connected graphs with 2...15 vertices

64 regular polygons of the 4t kind”, all but 12 are circulant. Blue odd-vertex, yellow odd-degree.
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Graph products

Four important graph products: Viy = VgVy

1. Cartesian GoOH : Prism if H=K, eg., =Vse,+ egVv,

2. Tensor or direct GxH : diagonal edges, e, = 2ece,
3. Strong GXIH : Union of both, egx, =vse,+egv, + 2ese,
4. Lexicographic G[H]: egy, = vee tegvy,? and if H=nK, , eg )= n*eg

Cartesian Tensor/direct Strong Lexicographic
Cs O K2 Csx Ka=Cyp CsX Ko 2K1[Cs]=2Cs  5K[K2] =5K:

=1

Aut 320 Aut 200 Aut 3840

Aut 20 Aut 20


https://en.wikipedia.org/wiki/Graph_product
https://en.wikipedia.org/wiki/Cartesian_product_of_graphs
https://en.wikipedia.org/wiki/Cartesian_product_of_graphs
https://en.wikipedia.org/wiki/Tensor_product_of_graphs
https://en.wikipedia.org/wiki/Tensor_product_of_graphs
https://en.wikipedia.org/wiki/Strong_product_of_graphs
https://en.wikipedia.org/wiki/Strong_product_of_graphs
https://en.wikipedia.org/wiki/Lexicographic_product_of_graphs
https://en.wikipedia.org/wiki/Lexicographic_product_of_graphs

Circulant graphs Ci {91,950}

Multi-star polygon {p/(q.,9,,---)} = {p/q.} U {p/q,} ... (connecting edges every q,, q, ...)
Hamiltonian cyclic graphs can start with g,=1, defining convex perimeter of p-gon.
Complete graphs index edges {1,2,...,p/2}.

Compliment graphs use complete graph complement set to {q,,9,,-..}.

Cartesian Tensor/direct Strong Lexicographic
Cs O Kz Cs x K2=Cyp Cs X K Cs[2K1] 2K1[Cs]=2C5  5K4[K2] =5K>
Aut 20 Aut 20 Aut 320 Aut 320 Aut 200 Aut 3840

Circularized

RS

{10/(2,5)} {10/1} {10/(1,4,5)} {10/(1,4)} {10/2} = 2{5} {10/5}=5{}

(%



https://en.wikipedia.org/wiki/Circulant_graph
https://en.wikipedia.org/wiki/Hamiltonian_path
https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Complement_graph

Bipartite circulant graphs

Bipartite graph circulants may include half paths of odd length, ~ symbol on length.

* Cubic graph Q; misses 4 edges of K, , (cental diagonals of a cube)

 Heawood graph and its bipartite complement are both edge transitive.

Bipartite complement

Q:=KsxK> Heawood cubic  Heawood quartic
, VAR
{38/(1,~3)} {14/(1,~5)} {14/(3,~5,7)}


https://en.wikipedia.org/wiki/Bipartite_graph
https://en.wikipedia.org/wiki/Heawood_graph
https://en.wikipedia.org/wiki/Heawood_graph

What is a regular polygon?

A v,e-transitive “body” attachable to other polygons edge-to-edge.
(Full symmetry may only be displayable in higher dimensions)

(1-polytope) First Kind Third kind Fourth kinds

Edgeless Flat Skew Tetrahedral Compound
“tetron” square “square” “square” “square”
{4/0} {4/1} {2}1# } {4/(1,2)} {4/2}

e 3>



Regular polygons and polyhedra of the 4t kind!

* Regular polyhedra of nth kind have nth kind of regular faces and vertex

figure.
1.

Allow regular convex faces and verfs
5 Platonic {3,p}, {p,3}, with p=3,4,5

. Allow regular star faces and verfs

* 4 Kepler-Poinsots {5/2,p}, {p,5/2}, p=3,5

. Allow regular skew faces or verfs

 (a) Petrie infinite polyhedra (skew verfs): {4,6|4}, {6,4|4}, {6,6|3}
* (b) Petrial regulars (skew faces): {3,p}., 10,3}, {5/2,p}.{p,5/2,p},, with p=3,4,5

Allow symmetric graph faces and verfs
* Finally begun being explored!

. Allow symmetric hypergraphs faces and verfs

* (a) Regular complex polygons in C? (*R*) and complex polyhedra in C3 (~R®).
e (b) Projective geometries PG(3,k) and point-line-plane configurations



Regular Polygons of the 5% kind

Regular polygons as symmetric hypergraphs!

Complete Quadrilateral Complete Quadrangle
(45 6,) (6, 4;)
\ | vl . \
vli| 4| 3 6

_BE

el | 3



https://en.wikipedia.org/wiki/Complete_quadrangle

Projective Geometries

PG(2,2) is a Fano Plane, configuration (7), 7 vertices, 7 lines. (See PG incidence structures)
PG(3,2) is “polyhedron” with 15 vertices, 35 PG(1,2) trionic edges, and 15 PG(2,2) faces.

Both self-dual they can be drawn in triangle and tetrahedron with 3-vertex lines and circles.
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https://en.wikipedia.org/wiki/Fano_plane
https://bendwavy.org/klitzing/explain/pg.htm
https://en.wikipedia.org/wiki/PG(3,2)
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