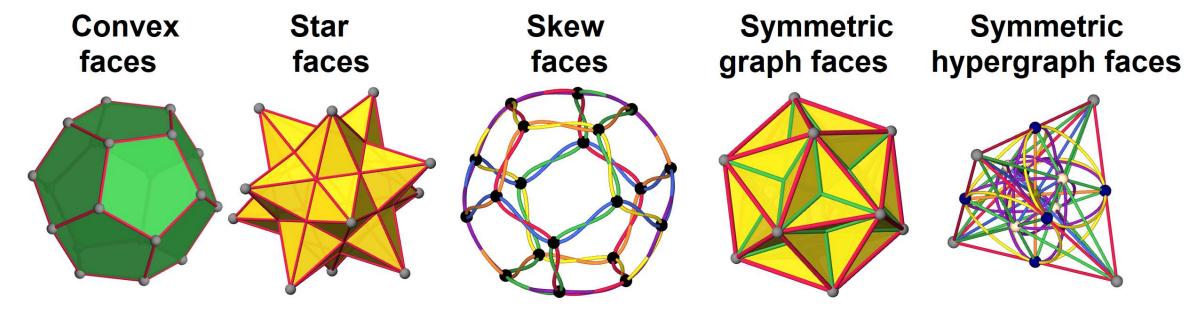
Regular Polygons and Polyhedra of the Fourth Kind

MAA NCS/MinnMATYC Fall 2025 meeting, October 11, 2025

Tom Ruen, Email: tomruen@gmail.com, Web: http://roice3.org/ruen/

Abstract: Regular polyhedra exhibit transitivity across vertices, edges, and faces, bounded by regular faces and vertex figures. They occur in dual pairs, unless self-dual. Classical families include Platonic solids with regular convex faces (1st kind), Kepler–Poinsot polyhedra with regular star faces (2nd kind), and Petrie–Coxeter with regular skew faces (3rd kind). We propose a 4th kind, allowing faces and vertex figures to be symmetric graphs. Examples include polyhedra with faces isomorphic to K_4 (skeletal 3-simplex), K_5 (skeletal 4-simplex), $K_{2,2,2}$ (skeletal octahedron), and $2C_3$ (star of David). We survey symmetric graphs up to 15 vertices as candidate faces for future regular polyhedra.



Regular polygons and polyhedra of the 4th kind!

Regular polyhedra of *n*th kind have *n*th kind of regular faces and vertex figure.

1. Allow regular convex faces and verfs

• 5 Platonic {3,p}, {p,3}, with *p*=3,4,5

2. Allow regular star faces and verfs

• 4 Kepler-Poinsots {5/2,*p*}, {*p*,5/2}, *p*=3,5

3. Allow regular skew faces or verfs

- (a) Petrie infinite polyhedra (skew verfs): {4,6|4}, {6,4|4}, {6,6|3}
- (b) Petrial regulars (skew faces): $\{3,p\}_{\pi}$, $\{p,3\}_{\pi}$, $\{5/2,p\}_{\pi}$, $\{p,5/2,p\}_{\pi}$ with p=3,4,5

4. Allow symmetric graph faces and verfs

Yet unexplored polyhedra!

5. Allow symmetric hypergraphs faces and verfs

- (a) Regular complex polygons in C^2 (${}^{\sim}R^4$) and complex polyhedra in C^3 (${}^{\sim}R^6$).
- (b) Projective geometries PG(3,k) and point-line-plane configurations

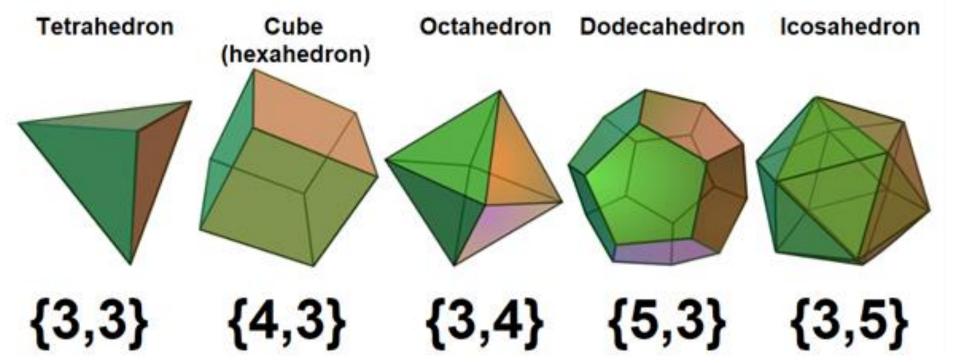
First Kind: Platonic solids

Named by Kepler after Plato (~400 BC) who associated with: *fire, earth, air, water, and aether.* Triangles, squares and pentagons fit in a cyclic path around a vertex in 5 ways.

Schläfli symbol $\{p, q\}$ means wrap q p-gons around a vertex.

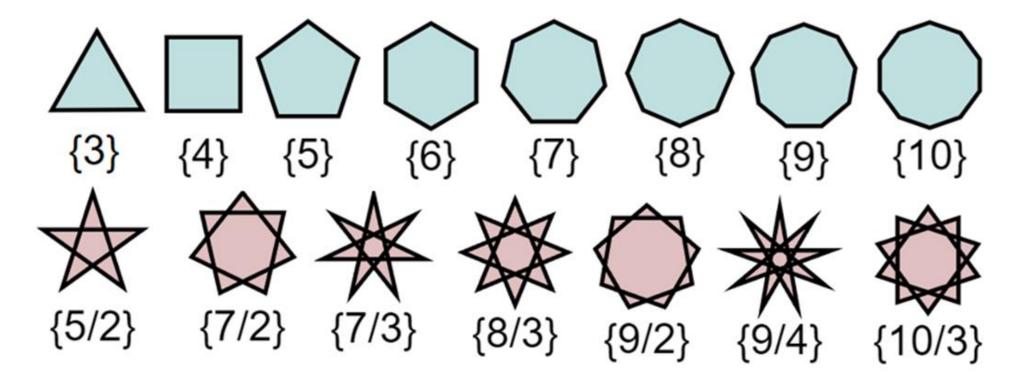
The q-gon is a "vertex figure", the cyclic path of neighboring vertices.

 $\{3, 3\}$ is self-dual. $\{3, p\}$ and $\{p, 3\}$ are duals, p=4, 5.



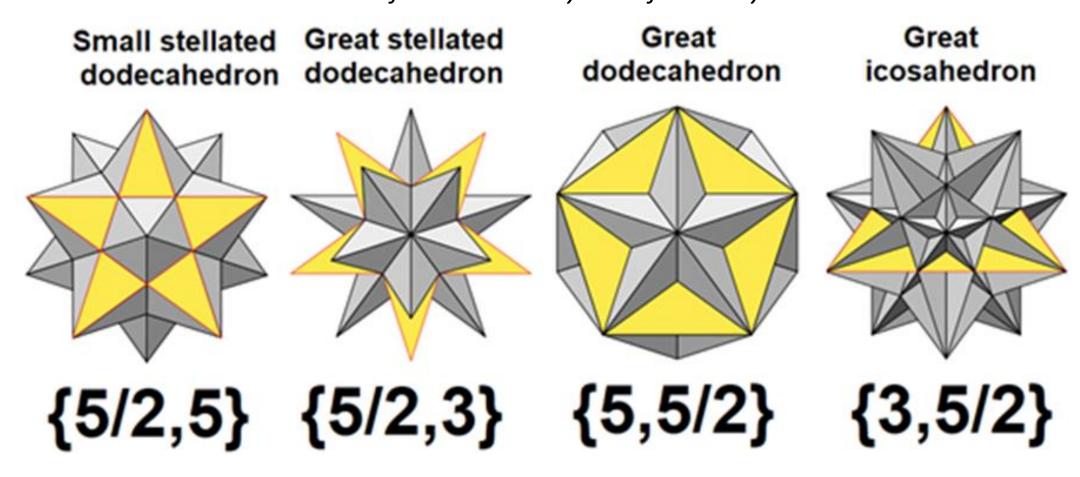
Regular polygons of the first and second kind

(First) Regular <u>convex polygons</u>, $\{p\}$, have p equal vertices and edges, p=3,4,5,... (Second) Regular <u>star polygons</u> $\{p/q\}$ have p vertices, edges, step q, $\gcd\{p,q\}=1$ The q is also called the density, times the edge path wraps around. Only the <u>pentagram</u>, $\{5/2\}$ exists in regular polyhedra...



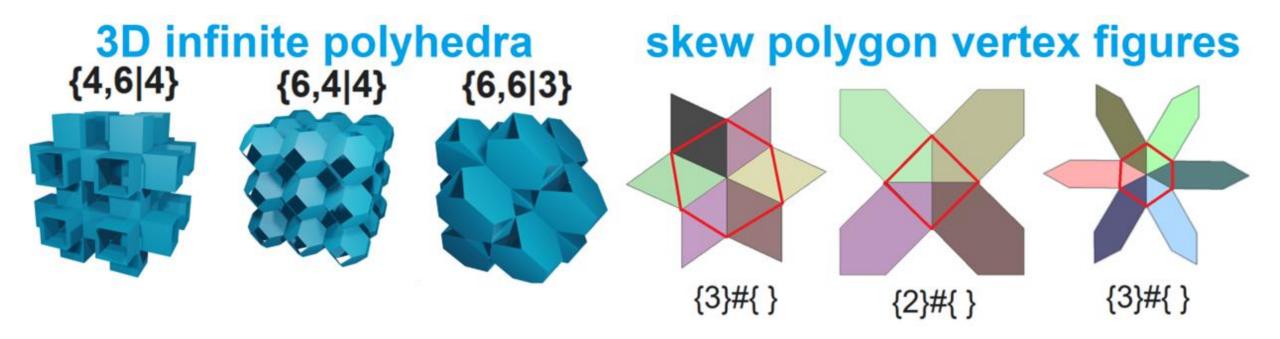
Second Kind: Kepler-Poinsot

Johannes Kepler identified in 1609, Harmonice Mundi Louis Poinsot rediscovered and formalized in 1809. One face is colored yellow for clarity



Third Kind (a): Skew vertex figures

Donald Coxeter named these <u>infinite regular polyhedra</u> after John Flinders Petrie who in 1926 found regular faces (squares and hexagons) fit in 3D in regular skew vertex figures. $\{p, 2q \mid h\}$ has 2q p-gons zig-zagging, $\{q\}\#\{\}$, h-gonal hole cycles.

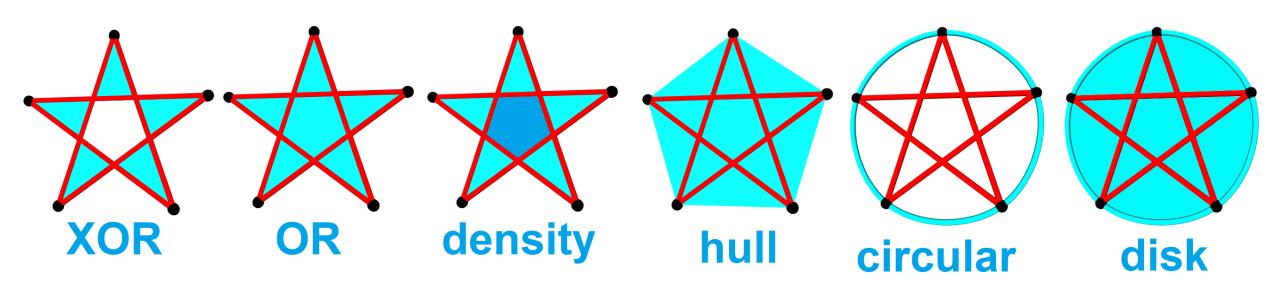


Detour: Polygon interiors

Convex polygons have clear interiors.
Star polygons are topological, not bounding space.

Representations

- 1. Fill by edge crossings: logical XOR, OR, density count
- 2. Convex hulls polygonal interior, circular, disk interior

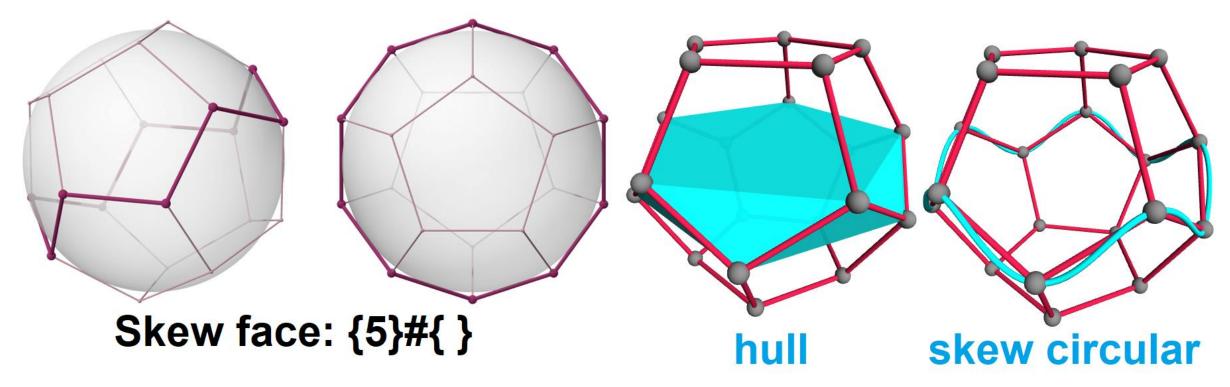


Third Kind (b): skew faces - Petrial Platonics

A petrial polyhedron uses skeleton of a regular polyhedron and connects faces as regular skew polygons.

Dodecahedral petrial $\{5,3\}_{\pi}$ has central skew decagon faces: $\{5\}\#\{\}$.

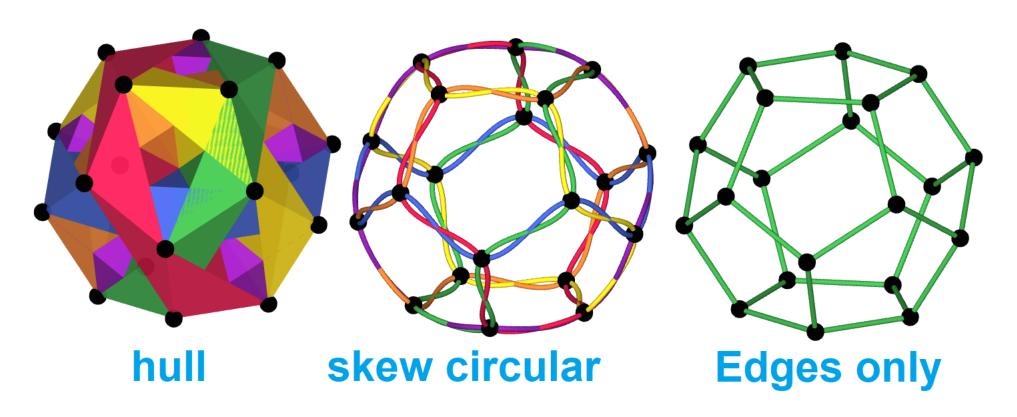
Drawing "interior" of skew decagon by convex hull or a skew circle.



Third Kind (b): skew faces

The petrial dodecahedron has the 20 vertices, and 30 edges of dodecahedron, but only 6 faces as skew decagons.

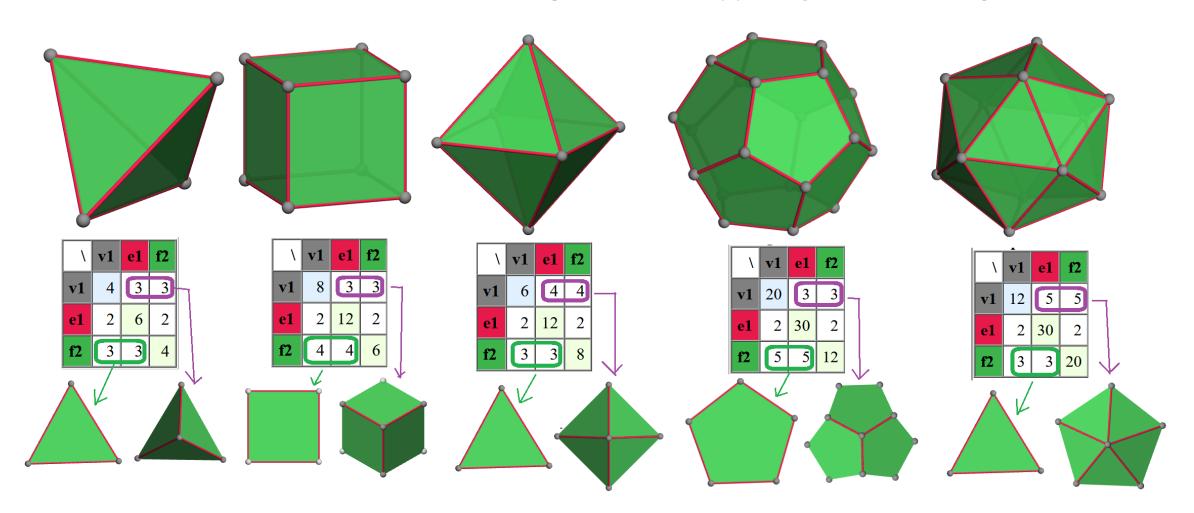
Hull render shows as interpenetrating pentagonal antiprisms
Skew circular better shows 6 colored paths, 2 faces paths per edge.



Detour: Configuration matrix

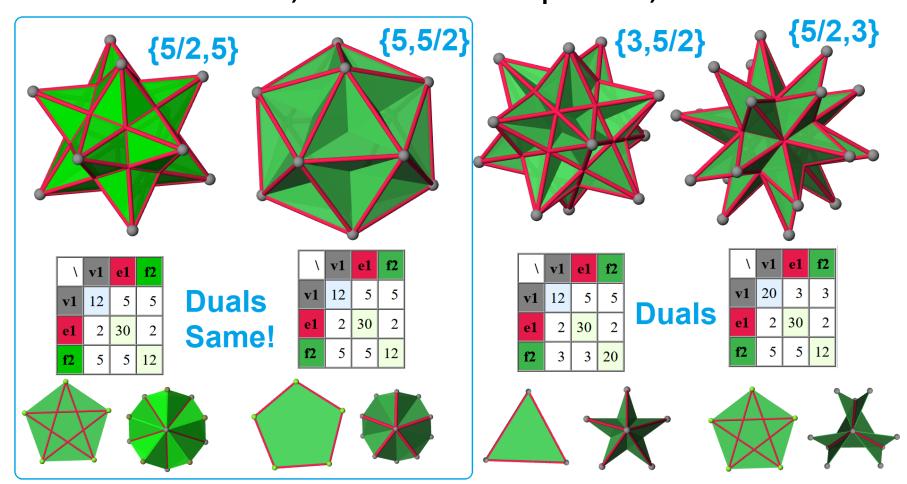
A <u>configuration matrix</u> for polyhedron counts vertices, edges, and faces on the diagonal and incidences off diagonal.

Lower left counts vertices and edges of faces. Upper right on vertex figure.



Configurations of Kepler-Poinsot

{5/2,5} and {5,5/2} have identical configuration matrices Since pentagon {5} and pentagram {5/2} same structure! Same 12 vertices, same 12 face planes, different 30 edges.

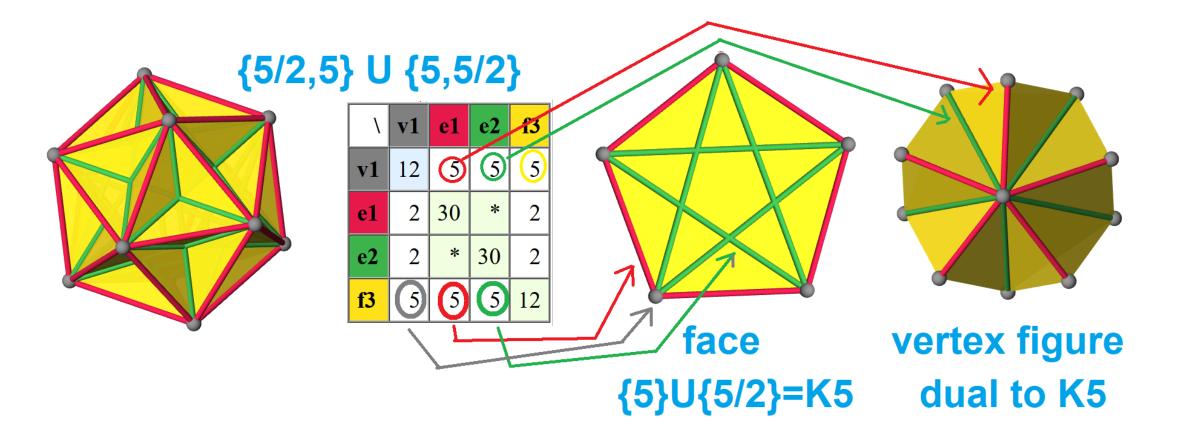


A polyhedron of 4th kind!

Union of $\{5/2,5\}$ and $\{5,5/2\}$ gives us $\{K_5,K_5\}$?

Each "pentagonal" face is a complete graph, K₅!

Edges (red/green) different length, but abstractly transitive, symmetry double to 240. Full symmetry can be expressed in 6-dimension on 6-orthoplex, 4-simplex "faces"

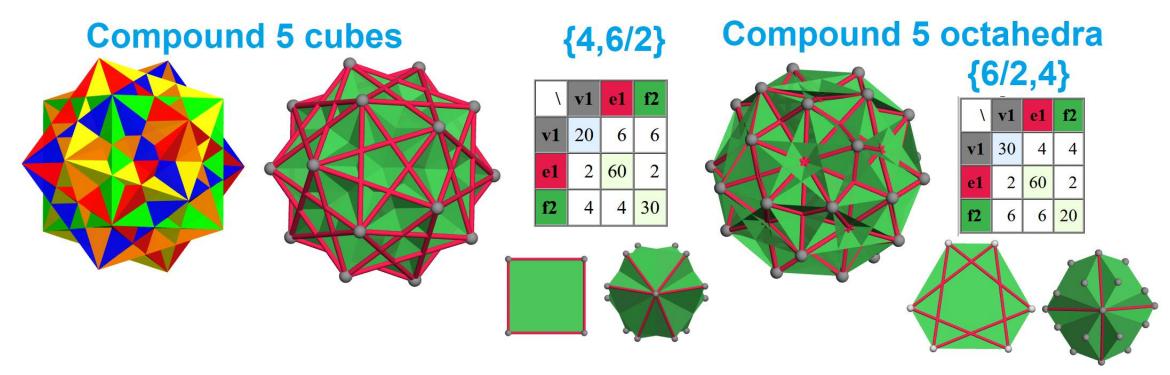


Other examples?

A compound of 5 cubes exist on 20 vertices of dodecahedron.

It can be interpreted as a polyhedron with square faces and a double triangle vertex figure. {4,6/2}

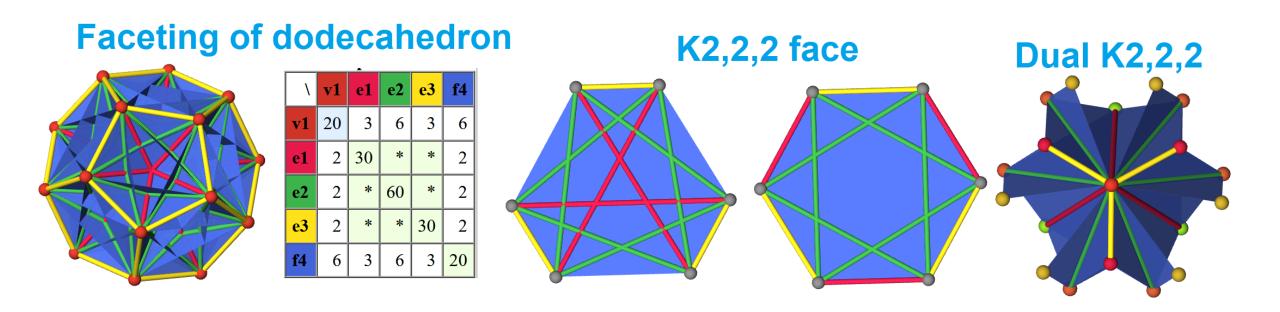
Its dual, compound of 5 octahedra as {6/2,4}



Another example

A second level faceting of a dodecahedral skeleton produces a 20 vertex, 20 face self-dual polyhedron, with 12 edges per face and 120 total edges.

The face is isomorphic to skeleton of octahedron, graph $K_{2,2,2}$.



Regular polyhedra of the 4th kind

These new polyhedra can be seen as rank 3 incidence structures composed of 1 transitivity class of vertex, edge, and face.

Each edge has 2 vertices, and incident to 2 faces.

Faces are graph: a vertices, b edges, degree 2b/a. $(a_{2b/a} b_2)$

Vertex figures are graphs: c edges, d faces, degree 2d/c. $(c_{2d/c} d_2)$

How many more?! No one knows!

NEXT:

What small symmetric graphs exist?

			20/6 2										
			v-e handshaking			v-f har	ndshakii	ng	e-f handshaking				
V	С	d	vc=2e			vd	=af		2e=bf				
2	e	2	V	С		V	d		e	2			
a	b	f	2	e		a	f		b	f			

How many small symmetric graphs?

A133181 Number of distinct connected simple symmetric (edge- and vertex-transitive) graphs with n nodes A087145 Number of distinct disconnected simple symmetric graphs on n nodes.



Vertices	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Connected	1	1	1	2	2	4	2	5	4	8	2	11	4	8	10	15	4	14	3	22	13	8	2	34	11
Unconnected	0	1	1	2	1	3	1	4	2	4	1	9	1	4	4	9	1	11	1	14	4	4	1	25	3
All	1	2	2	4	3	7	3	9	6	12	3	20	5	12	14	24	5	25	4	36	17	12	3	59	14
Cumulative	1	3	5	9	12	19	22	31	37	49	52	72	77	89	103	127	132	157	161	197	214	226	229	288	302

Dr. Marston Conder, 2021

Department of Mathematics, University of Auckland

A complete list of all connected symmetric graphs of order 2 to 47! (previous up to 30) Computed, indexed, but graphs are not named!

Below is a complete list of all connected symmetric (arc-transitive) graphs of order 2 to 47, together with some information about their automorphism groups. This list was constructed from the database of all transitive groups of degree up to 47, available in Magma.

Note that for any particular order (2 to 47), the graphs are not necessarily in the same order as in the list I created for orders 2 to 30 in April 2014. In this one, they are ordered by valency, and by order of the automorphism group (for each given valency).

The graphs in this list are specified by their edge-sets. Another copy of this list is available with graphs specified by the neighbours of each vertex.

Marston Conder December 2021 Symmetric connected graphs of order 2

```
Symmetric graph 1 of order 2
Valency 1
Diameter 1
Automorphism group of order 2
Number of arcs = 2
Number of 2-arcs = 0 2-arc-transitive true
Edge-set
{ {1,2} }
```

Symmetric connected graphs with 2...15 vertices

64 regular polygons of the 4th kind", all but 12 are circulant. Blue odd-vertex, yellow odd-degree.

													_
	K ₂	C ₃		C ₄	K ₄		C ₅	K ₅		C ₆ =K ₃ ×K ₂	K ₂ [3K ₁]	C ₃ [2K ₁]	K ₆
26				\Diamond	\bigoplus					$\langle \rangle$	\bigotimes		
	2.1	3.1		4.1	4.2		5.1	5.2		6.1	6.2	6.3	6.4
	C ₇	K ₇		C ₈	K ₄ ×K ₂ =Q ₃	C ₄ [2K ₁]=K ₂ [4K ₁]	K ₄ [2K ₁]	K ₈		C ₉	K ₃ ×K ₃	K ₃ [3K ₁]	K ₉
79				\bigcirc									
	7.1	7.2		8.1	8.2	8.3	8.4	8.5		9.1	9.2	9.3	9.4
	C ₁₀	<u>G(5,2)</u>	K ₅ ×K ₂	C5[2K ₁]	K ₂ [5K ₁]	L(K ₅)	K ₅ [2K ₁]	K ₁₀		C ₁₁	K ₁₁		
1011													
	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8		11.1	11.2		
	C ₁₂	со	C ₄ ×K ₃	1	K ₆ ×K ₂	{12/(1,2,5)}	C ₄ [3K ₁]	K ₃ [4K ₁]	K ₄ [3K ₁]	K ₆ [2K ₁]	K ₁₂		
12	\bigcirc												
	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	12.10	12.11		
	C ₁₃	{13/(1,5)}	Paley(13)	K ₁₃		C ₁₄	Heawood	Co-Heawood	C ₇ [2K ₁]	K ₇ ×K ₂	K ₂ [7K ₁]	K ₇ [2K ₁]	K ₁₄
1314						\bigcirc							
	13.1	13.2	13.3	13.4		14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8
	C ₁₅	C ₅ ×K ₃	L(G(5,2)]	Co(L(K6))	C5[3K ₁]	L(K ₆)	K ₅ ×K ₃	K ₃ [5K ₁]	K ₅ [3K ₁]	K ₁₅			
15													
	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	15.10			

Graph products

Four important graph products:

$$V_{G^*H} = V_G V_H$$

1. Cartesian

 $G \square H : Prism if H=K_2$ $e_{G \square H} = v_G e_H + e_G v_H$

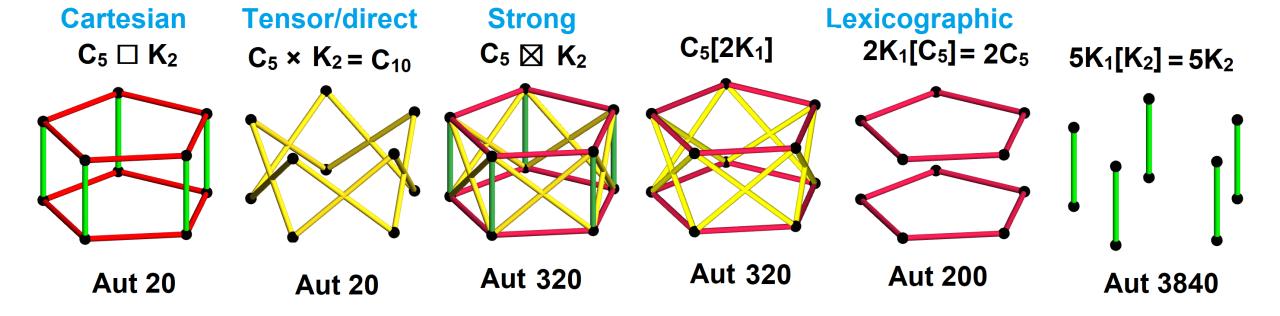
$$e_{G \cap H} = v_G e_H + e_G v_H$$

2. Tensor or direct $G \times H$: diagonal edges, $e_{G \times H} = 2e_{G}e_{H}$

3. Strong

 $G \boxtimes H$: Union of both, $e_{G \boxtimes H} = v_G e_H + e_G v_H + 2e_G e_H$

4. Lexicographic $G[H]: e_{G[H]} = v_G e_H + e_G v_H^2$ and if $H = nK_1$, $e_{G[nK1]} = n^2 e_G$



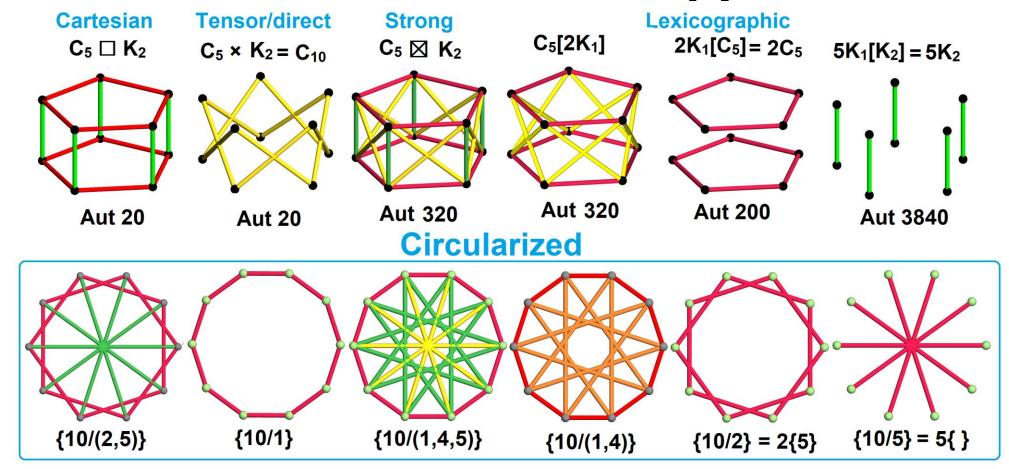
Circulant graphs $Ci_p\{q_1,q_2,...,q_k\}$

Multi-star polygon $\{p/(q_1,q_2,...)\} = \{p/q_1\} \cup \{p/q_2\} ...$ (connecting edges every $q_1, q_2 ...$)

<u>Hamiltonian cyclic</u> graphs can start with q_1 =1, defining convex perimeter of p-gon.

Complete graphs index edges $\{1,2,...,p/2\}$.

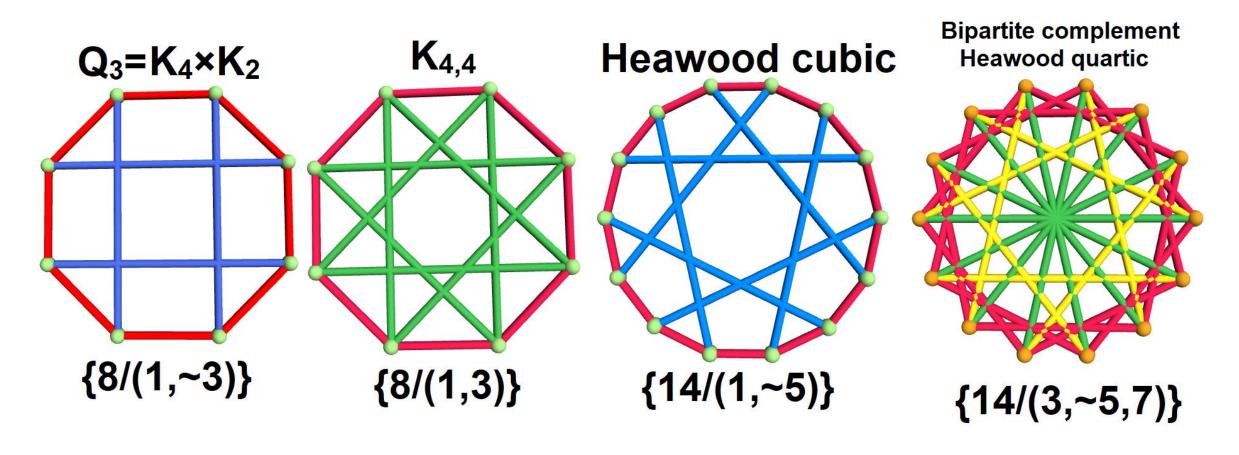
<u>Compliment graphs</u> use complete graph complement set to $\{q_1, q_2, ...\}$.



Bipartite circulant graphs

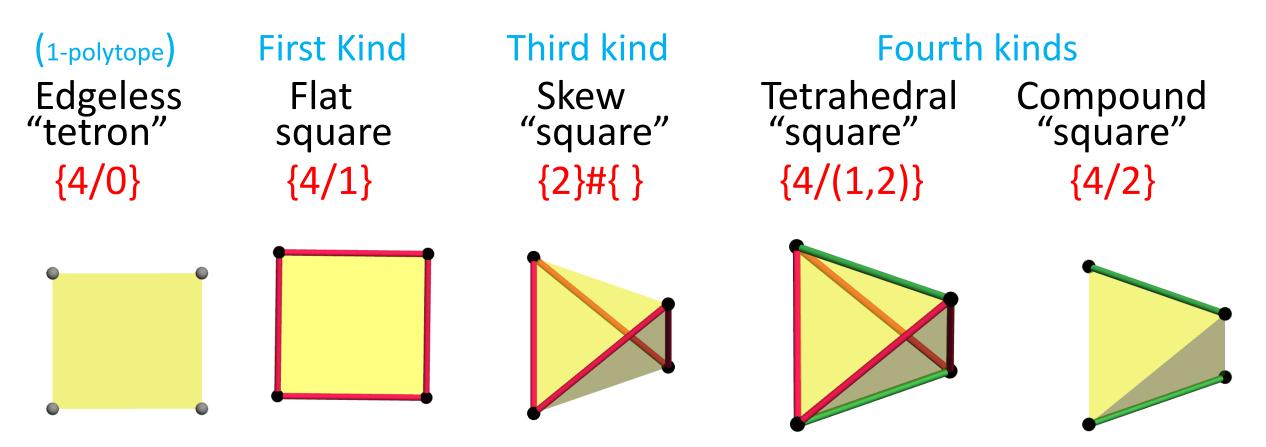
Bipartite graph circulants may include half paths of odd length, ~ symbol on length.

- Cubic graph Q₃ misses 4 edges of K_{4.4} (cental diagonals of a cube)
- Heawood graph and its bipartite complement are both edge transitive.



What is a regular polygon?

A v,e-transitive "body" attachable to other polygons edge-to-edge. (Full symmetry may only be displayable in higher dimensions)



Regular polygons and polyhedra of the 4th kind!

 Regular polyhedra of nth kind have nth kind of regular faces and vertex figure.

1. Allow regular convex faces and verfs

• 5 Platonic {3,p}, {p,3}, with *p*=3,4,5

2. Allow regular star faces and verfs

• 4 Kepler-Poinsots {5/2,*p*}, {*p*,5/2}, *p*=3,5

3. Allow regular skew faces or verfs

- (a) Petrie infinite polyhedra (skew verfs): {4,6|4}, {6,4|4}, {6,6|3}
- (b) Petrial regulars (skew faces): $\{3,p\}_{\pi}$, $\{p,3\}_{\pi}$, $\{5/2,p\}_{\pi}$, $\{p,5/2,p\}_{\pi}$ with p=3,4,5

4. Allow symmetric graph faces and verfs

Finally begun being explored!

5. Allow symmetric hypergraphs faces and verfs

- (a) Regular complex polygons in C^2 (${}^{\sim}R^4$) and complex polyhedra in C^3 (${}^{\sim}R^6$).
- (b) Projective geometries PG(3,k) and point-line-plane configurations

Regular Polygons of the 5th kind

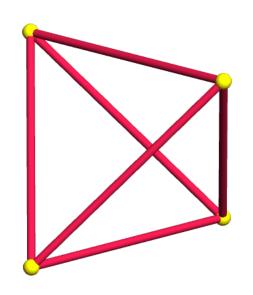
Regular polygons as symmetric hypergraphs!

Complete Quadrilateral

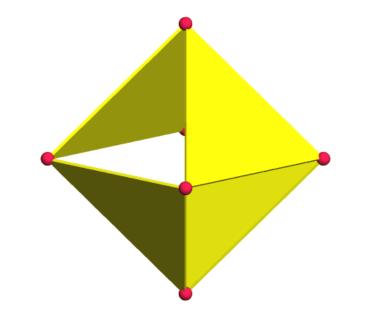
 $(4_3 6_2)$

Complete Quadrangle

 $(6_2 4_3)$



\	v1	e1
v1	4	3
e1	2	6



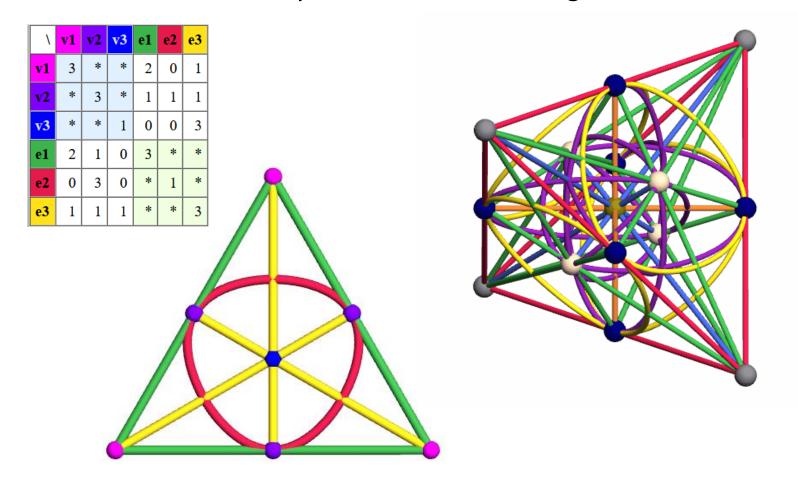
\	v1	e1
v1	6	2
e1	3	4

Projective Geometries

PG(2,2) is a <u>Fano Plane</u>, configuration (7₃), 7 vertices, 7 lines. (See <u>PG incidence structures</u>)

PG(3,2) is "polyhedron" with 15 vertices, 35 PG(1,2) trionic edges, and 15 PG(2,2) faces.

Both self-dual they can be drawn in triangle and tetrahedron with 3-vertex lines and circles.



١	v1	v2	v3	v4	el	e2	e3	e4	e5	еб	f 7	f8	f 9	f10
vl	4	*	*	*	3	1	0	3	0	0	3	1	3	0
v2	*	6	*	*	2	0	1	1	1	2	2	2	2	1
v3	*	*	4	*	3	1	3	0	0	0	1	3	3	0
v4	*	*	*	1	0	4	0	0	3	0	0	0	6	1
el	1	1	1	0	12	*	*	*	*	*	1	1	1	0
e2	1	0	1	1	*	4	*	*	*	*	0	0	3	0
e3	0	1	2	0	*	*	6	*	*	*	0	2	1	0
e4	2	1	0	0	*	*	*	6	*	*	2	0	1	0
e5	0	2	0	1	*	*	*	*	3	*	0	0	2	1
еб	0	3	0	0	*	*	*	*	*	4	1	1	0	1
f 7	3	3	1	0	3	0	0	3	0	1	4	*	*	*
f8	1	3	3	0	3	0	3	0	0	1	*	4	*	*
f 9	2	2	2	1	2	2	1	1	1	0	*	*	6	*
f10	0	6	0	1	0	0	0	0	3	4	*	*	*	1